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Golub MD, Yu BM, Schwartz AB, Chase SM. Motor cortical
control of movement speed with implications for brain-machine
interface control. J Neurophysiol 112: 411–429, 2014. First published
April 9, 2014; doi:10.1152/jn.00391.2013.—Motor cortex plays a
substantial role in driving movement, yet the details underlying this
control remain unresolved. We analyzed the extent to which move-
ment-related information could be extracted from single-trial motor
cortical activity recorded while monkeys performed center-out reach-
ing. Using information theoretic techniques, we found that single units
carry relatively little speed-related information compared with direc-
tion-related information. This result is not mitigated at the population
level: simultaneously recorded population activity predicted speed
with significantly lower accuracy relative to direction predictions.
Furthermore, a unit-dropping analysis revealed that speed accuracy
would likely remain lower than direction accuracy, even given larger
populations. These results suggest that the instantaneous details of
single-trial movement speed are difficult to extract using commonly
assumed coding schemes. This apparent paucity of speed information
takes particular importance in the context of brain-machine interfaces
(BMIs), which rely on extracting kinematic information from motor
cortex. Previous studies have highlighted subjects’ difficulties in
holding a BMI cursor stable at targets. These studies, along with our
finding of relatively little speed information in motor cortex, inspired
a speed-dampening Kalman filter (SDKF) that automatically slows the
cursor upon detecting changes in decoded movement direction. Ef-
fectively, SDKF enhances speed control by using prevalent directional
signals, rather than requiring speed to be directly decoded from neural
activity. SDKF improved success rates by a factor of 1.7 relative to a
standard Kalman filter in a closed-loop BMI task requiring stable
stops at targets. BMI systems enabling stable stops will be more
effective and user-friendly when translated into clinical applications.

motor control; neural coding; brain-machine interface

PREVIOUS STUDIES HAVE INVESTIGATED the extent to which motor
cortex encodes kinematic variables, including movement di-
rection (Ashe and Georgopoulos 1994; Georgopoulos et al.
1982; Schwartz et al. 1988) and movement speed (Churchland
et al. 2006; Moran and Schwartz 1999b; Schwartz 1992, 1994).
The ability to accurately read out direction and speed from
motor cortex takes particular importance in the context of
brain-machine interfaces (BMIs), which translate neural activ-
ity into control signals for driving prosthetic devices, such as
robotic limbs (Carmena et al. 2003; Chapin et al. 1999; Velliste
et al. 2008; Wessberg et al. 2000), or computer cursors (Gilja
et al. 2012; Mulliken et al. 2008; Serruya et al. 2002; Suminski

et al. 2010; Taylor et al. 2002). Despite impressive advances in
BMI technologies in recent years, BMI control of robotic limbs
and cursors is still inferior to able-bodied control of natural
limbs and physical pointing devices, especially with respect to
the stability of stopping, as pointed out in previous studies (Car-
mena et al. 2003; Ganguly and Carmena 2009; Gilja et al. 2012;
Hochberg et al. 2006; Kim et al. 2008). To better understand the
origin of this poor control of BMI movement speed, we looked for
signatures of a robust representation of instantaneous movement
speed in single-trial reaching movements.

We analyzed spike trains recorded simultaneously across
primary and premotor cortices of rhesus monkeys during a
three-dimensional (3D) center-out reaching task. Using stan-
dard information theoretic and population decoding tech-
niques, we found substantially less speed-related information
than direction-related information in neural activity at the
levels of both single units and simultaneously recorded popu-
lations. We also performed a unit-dropping analysis, which
suggests that our ability to decode movement speed might not
improve substantially with access to larger numbers of neu-
rons. None of our analyses revealed a substantial representa-
tion of the moment-by-moment details of movement speed on
single-trial bases.

The finding that speed information is difficult to extract from
motor cortical population activity informed a novel approach to
implementing movement speed when driving BMI devices.
This decoder, termed the speed-dampening Kalman filter
(SDKF), incorporates the assumption that movement speed and
angular velocity should be inversely related. Rather than rely-
ing on neural activity to provide the complete details of
movement speed, which may be difficult to extract in the
real-time setting of BMI, SDKF enhances control of movement
speed by using directional signals, which are more easily
extracted from neural activity. Since movement direction can
be reliably inferred from motor cortical population responses,
angular velocity (the temporal derivative of direction) can be
extracted reliably as well. SDKF uses angular velocity of the
decoded cursor trajectory to modulate cursor speed, thus re-
ducing the system’s reliance on cortical activity to directly
provide the moment-by-moment details of movement speed.

METHODS

Neural Recordings and Behavioral Tasks

Monkeys performed two tasks: an arm reaching task and a BMI
cursor control task. All animal procedures were performed with the
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approval of the Institutional Animal Care and Use Committee of the
University of Pittsburgh.

Neural recordings I: arm reaching. Two male rhesus macaques
(Macaca mulatta) were implanted with 96-channel microelectrode
arrays (Blackrock Systems, Salt Lake City, UT) in motor cortex
contralateral to the reaching arm used in the behavioral task. Neuronal
activities were manually sorted (Plexon, Dallas, TX) from single- and
multineuron units, and spike times were recorded throughout the
behavioral tasks. Monkey F arm reaching data have been previously
described in Fraser and Schwartz (2012). Briefly, monkey F had two
arrays: one array targeted proximal arm area of primary motor cortex,
and a second array targeted ventral premotor cortex. Across both
arrays, 119 units were identified and tracked across 4 experimental
sessions using techniques described in Fraser and Schwartz (2012).
Monkey T had a single array targeting arm proximal area of primary
motor cortex. Across 5 experimental sessions, 67.8 � 11.4 units were
identified.

Behavioral task I: arm reaching. Both monkeys were trained to
perform 3D arm reaching movements. Arm movements were tracked
at 60 Hz using an infrared marker (Northern Digital, Waterloo, ON,
Canada) taped to the wrist of the reaching hand. Tracked positions
were displayed to the subjects as a spherical virtual cursor (radius: 8
mm) on a stereoscopic display (Dimension Technologies, Rochester,
NY). Movements were either from a workspace-centered virtual target
to 1 of 26 virtual peripheral targets (center-out) or from a peripheral
target to the central target (out-center). All targets were displayed as
spheres (radius: 8 mm), and peripheral targets were distributed
roughly evenly about the surface of a virtual sphere (radius: 66 mm,
monkey F; 75 mm, monkey T). A trial was initiated by the subject
acquiring visible overlap of the cursor with the start target for
400–600 ms. Next, a virtual target was presented, and the subject was
required to acquire that target with the virtual cursor within 800 ms of
presentation and hold with visible overlap for another 400–600 ms.
Trials were deemed successful upon completion of this sequence and
were followed by a water reward of 60 �l (monkey F) or 150–190 �l
(monkey T). Failed trials were not rewarded.

We analyzed 1,040 successful trials from monkey F and 1,316
successful trials from monkey T. All analyses were performed on data
recorded during the period between completion of the start hold and
beginning of the target hold.

Neural recordings and behavioral task II: BMI control. Monkey F
also performed an eight-target 2D center-out BMI cursor task,
whereby recorded neural activity was translated in real-time into
movements of a BMI cursor. The cursor (radius: 7 mm) and targets
(radius: 7 mm) were displayed to the subject on a frontoparallel
display. Target directions were chosen pseudorandomly from one of
eight directions spaced uniformly about the perimeter of a workspace-
centered circle (radius: 85 mm), and unless noted otherwise, target
hold times were randomly drawn from a uniform distribution (range:
0–600 ms). The subject initiated a new trial by modulating neural
activity to drive the cursor to visibly overlap a workspace-centered
target for 150 ms. After this initial hold, a peripheral target appeared,
instructing the subject to acquire the target with the BMI cursor. A
trial was deemed successful if the subject acquired and maintained
target acquisition for the trial-specific hold period. A trial was deemed
failed if the cursor left the target within the hold period following
target acquisition, or if the target was not acquired within 3 s after
target onset. The subject was naive to each trial’s target hold require-
ment until trial completion. Successful trials were rewarded with
150–180 �l of water. To initiate the next trial, the subject needed to
return the cursor to again visibly overlap a workspace-centered target
for 150 ms. The cursor was automatically returned to the workspace
center only following trials that the subject failed by exceeding the 3-s
time limit on target acquisition.

Two-dimensional cursor velocity was decoded from recorded neu-
ral population activity using either a novel speed-dampening Kalman
filter (SDKF) or a standard velocity-only Kalman filter (VKF). Each

experimental session consisted of alternating blocks of trials under
SDKF control and blocks of trials under VKF control. The decoder
applied during the first block was selected randomly at the beginning
of each session. Across 6 experimental sessions, neural responses
from 86.1 � 12.2 single and multiunits were sorted, and spike counts
were recorded in 33-ms nonoverlapping bins. In total, the subject
performed 1,216 successful trials with each decoder.

During four additional experimental sessions, target hold require-
ments were relaxed to 50 ms. In these sessions, cursor movements
were decoded by VKF only, using 95.3 � 9.7 units. All other
experimental methods match those described above with the excep-
tion that in two of these sessions, the cursor automatically snapped
back to the workspace center following trial success. The subject
performed 2,352 trials under this 50-ms hold condition.

Data Discretization

Movement speed and direction are continuous-valued quantities
expressed using different units and numbers of degrees of freedom. To
enable an unbiased comparison of the relationships between neural
activity and these two kinematic quantities, we discretized movement
speed and direction such that their statistical properties were matched.
Arm movements were segmented into nonoverlapping 30-ms inter-
vals, and average movement speed and movement direction were
computed across each 30-ms interval. We labeled each 30-ms interval
with 1 of 26 candidate speed labels and 1 of 26 candidate direction
labels. For a given movement speed, the applied speed label corre-
sponded to the nearest of 26 candidate speed centroids. This set of
speed centroids was chosen for each experimental session such that
each label was applied to approximately the same number of data
points (Fig. 1B). For a given movement direction, the applied direc-
tion label corresponded to the direction centroid, of 26 candidate
centroids, whose angle with the actual movement direction was
smallest. Direction centroids were optimized such that each of the 26
direction labels was applied to approximately the same number of data
points (Fig. 1C). The details of this optimization procedure are
provided in the Appendix. This discretization procedure results in a
uniform prior distribution of movement speeds and a matched uniform
prior distribution of movement directions. By matching these distri-
butions, chance prediction accuracy is thus also matched between the
two kinematic quantities.

Information Analysis

To characterize the speed-related and direction-related information
carried by spike trains from individual neural units, we computed the
mutual information between neural activity and movement kinemat-
ics. Mutual information is a statistic describing the extent of depen-
dence between two random variables. In contrast to correlation coef-
ficients determined from linear regression, mutual information does
not require specifying a form for the relationship between two vari-
ables, allowing it to capture arbitrary nonlinear relationships if they
are indeed present in the data.

Over a series of time lags, � � [�300 ms, 300 ms], we assembled
tuples of kinematic and neural measurements, {st, dt, yt��}, where st

� {s1, . . . , s26} is the discretized speed for the 30-ms interval
beginning at time t, dt � {d1, . . . , d26} is the discretized direction for
the 30-ms interval beginning at time t, and yt�� � �q is a vector
containing the spike counts across the q units during the 30-ms
interval beginning at time t � �. For unit j and time lag �, the mutual
information between spike counts and discretized kinematics is

Ij,� � �
x�X�

�
y�Y j

p(x, y)log2� p(x, y)

p(x)p(y)� , (1)

where Yj is the set of unique, nonoverlapping 30-ms spike counts
observed for unit j (e.g., Yj � {0, 1, 2} for a neuron that spiked at
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most twice during any 30-ms bin), and X� is the set of kinematics
labels for time intervals that lag the spike counts in Yj by � ms. The
labels in X� correspond to discretized movement speeds, {s1, . . . ,
s26}, when movement speed is the kinematics variable of interest, and
similarly, to discretized movement directions, {d1, . . . , d26}, when
movement direction is the kinematics variable of interest. The terms
p(x), p(y), and p(x, y) are the normalized frequencies of kinematics
label x, spike count y, and joint pair (x, y), respectively. In the event
that the pair (x, y) does not appear in a data set [i.e., p(x, y) � 0], we
evaluate the summand in Eq. 1 to be 0.

For each unit we determined the lag at which mutual information
was maximized between spike counts and lagged direction, �direction,
and lagged speed, �speed, where positive lags correspond to causal
relationships between neural activity and movement kinematics.
Henceforth, we refer to the mutual information at these optimal lags
as maximal direction information (MDI) and maximal speed informa-
tion (MSI).

Significance testing for information analysis. Information measures
are known to be biased such that one can measure positive values of
information when in fact the variables are independent (Treves and
Panzeri 1995). To determine whether a unit’s MDI and MSI values
were greater than expected by chance, we performed the following
permutation test. To determine a null information value, we shuffled
the correspondence between spike counts and discretized kinematics
and then computed mutual information. This shuffle preserves the
marginal distributions of spike counts and kinematics but destroys any
relationship between the quantities. To obtain a distribution of null
information values, we repeated this procedure 10,000 times using
speed as the kinematic variable and, similarly, using direction as the
kinematic variable. We determined a P value for each kinematic
variable to be the fraction of null information values that were larger
than the single mutual information value determined from the non-
shuffled data.

To determine whether a unit’s MDI and MSI values were signifi-
cantly different from each other, we performed the following boot-
strap procedure (Efron and Tibshirani 1993). For a data set consisting
of n timesteps, we generated a resampled data set by randomly
drawing n timesteps with replacement from the original data set and
then computed mutual information values across all lags for speed and
direction. We repeated this computation 20,000 times and determined
P values by computing the fraction of resampled computations result-
ing in MDI greater than MSI or MSI greater than MDI.

Regression Analysis

To establish a link between this information analysis motor cortical
tuning, we also performed a linear regression analysis (Ashe and
Georgopoulos 1994; Georgopoulos et al. 1982; Lebedev et al. 2005;
Perel et al. 2013; Schwartz 1992). We fit the following direction-only,
speed-only, and velocity tuning models:

Direction-only tuning:

yt�� � b1

vt,1

�vt�
� b2

vt,2

�vt�
� b3

vt,3

�vt�
� b0 (2)

Speed-only tuning:

yt�� � bs�vt� � b0 (3)

Velocity tuning:

yt�� � b1vt,1 � b2vt,2 � b3vt,3 � b0, (4)

where yt is the spike count during timestep t, vt � [vt,1 vt,2 vt,3] is a 3D
reach velocity, and �vt� is the corresponding reach speed. The {b} are
coefficients fit to data. Each model was fit separately across a range of
time lags, � � [�300 ms, 300 ms].
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Fig. 1. Discretization of movement kinematics from representative data set F081909. A: the trial-averaged speed profile (black) and several speed profiles from
example trials (gray). B: speeds were discretized using thresholds (gray lines) resulting in a uniform distribution across 26 speed labels (i.e., the area of the black
curve is constant between any 2 consecutive gray lines). C: movement directions were discretized according to the 26 shaded patches on the sphere. A given
3-dimensional (3D) movement direction (corresponding to a point on the sphere) was labeled according to the direction centroid, of 26 candidate centroids, whose
angle with the given movement direction was the smallest. Direction centroids were chosen such that each of the 26 labels was applied with approximately the
same frequency (i.e., the same number of direction points fall within each of the 26 patches shaded on the sphere).

413MOTOR CORTICAL CONTROL OF MOVEMENT SPEED

J Neurophysiol • doi:10.1152/jn.00391.2013 • www.jn.org



Neural Decoding for Arm Reaching

To characterize the kinematic information carried by simultane-
ously recorded population activity, we performed a population-decod-
ing analysis. We trained Poisson naive Bayes (PNB) classifiers (She-
noy et al. 2003) to independently predict discretized movement speed
and movement direction from a 30-ms population spike count vector.
In the current analysis, PNB assumes that 1) each neuron fires at a
characteristic rate determined by the current kinematics (either move-
ment direction or movement speed), 2) given these kinematics, each
neuron fires independently, and 3) observed spike counts are Poisson
noise-corrupted instantiations of the characteristic rates. PNB, while
explicitly specifying the structure of the relationship between neural
activity and kinematics, can capture nonlinear tuning effects and
Poisson-like signal-dependent noise.

The probabilistic model for PNB is given by

P(xt � k) � pk (5)

P(yt,j�xt � k) �
� j,k

yt,jexp(�� j,k)

yt,j !
(6)

P(yt�xt � k) � �
j�1

q

P(yt,j�xt � k) (7)

where Eq. 5 defines the prior probability of kinematics xt, Eq. 6 is the
probability of the observed spike count yt,j for unit j given the current
kinematics, and Eq. 7 is the probability of the observed population
spike count vector, yt � [yt,1, . . . , yt,q]=, across q simultaneously
recorded units given the current kinematics. The parameters of the
PNB model are the pk for k � {1, . . . , 26}, representing the prior
probability of kinematics label k, and the firing rate parameters {�j,k}
for each neuron j given kinematics label k. These model parameters
were determined via maximum likelihood over the training data. By
design of the kinematics discretization, pk � 1/26 for both speed and
direction, where the correspondence is approximate rather than exact
due to the fact that training data were chosen randomly from each data
set (see description of cross-validation below). To predict movement
kinematics given an observed spike count vector, we compute

x̂t
�argmax

k
P(xt � k�yt)

�argmax
k

P(xt � k)P(yt�xt � k).
(8)

Spike counts and discretized kinematics used in this analysis were
identical to those used in the information analysis.

As described, PNB enables a prediction of the current kinematics
given the current neural activity. To predict kinematics based on a
history of neural activity, we used an augmented PNB model that
incorporates the entire causal history of nonoverlapping 30-ms spike
counts beginning 300 ms before the corresponding movement kine-
matics. The probabilistic model for this history-based PNB includes
the prior from Eq. 5 and replaces Eqs. 6 and 7 with

P(yt��,j�xt � k) �
� j,k,�

yt��,jexp(�� j,k,�)

yt��,j !
(9)

P(yt�300, yt�270, . . . , yt�xt � k) � �
��T

�
j�1

q

P(yt��,j�xt � k), (10)

where Eq. 9 gives the probability of having observed yt��,j spikes
from unit j at time t � �, given the current kinematics, and Eq. 10 is
the joint probability of having observed the history of spike counts
over the past 300 ms across the q recorded units, given the current
kinematics. The parameters {�j,k,�} are now indexed for each neuron
j, kinematics label k, and time lag � � T, where T is the set of lags
from 0 to 300 ms in 30-ms intervals. To predict movement kinematics
given the spike count history, we compute

x̂t
�argmax

k
P(xt � k�yt�300, . . . , yt)

�argmax
k

P(xt � k)P(yt�300, . . . , yt�xt � k).
(11)

To assess how well the speed- and direction-based PNB models
would generalize to unseen data, we performed twofold cross-valida-
tion. Data were randomly partitioned into two subsets. First, we
trained PNB models on the first subset and evaluated predictions using
the second subset. Next, we reversed this process, training PNB
models on the second subset and evaluating predictions on the first
subset. In this fashion, each model was evaluated using data not seen
during model fitting.

Simulated Neural Populations

To provide intuition for the information and prediction analyses,
we simulated neural population activity under four parametric encod-
ing models. For each model, we fit parameters to actual recorded
neural activity and arm kinematics from a representative data set
(F081909). We then generated spike counts from each encoding
model, again using the actual recorded kinematics from the example
data set. This procedure provides simulated data sets that exactly
match the example real data set with respect to the number of units,
number of reaches, duration of reaches, and statistics of kinematics.

We simulated positive firing rates according the following encod-
ing models.

Direction-only tuning:

log(rt��) � b1

vt,1

�vt�
� b2

vt,2

�vt�
� b3

vt,3

�vt�
� b0 (12)

Speed-only tuning:

log(rt��) � bs�vt� � b0 (13)

Velocity tuning:

log(rt��) � b1vt,1 � b2vt,2 � b3vt,3 � b0 (14)

Independent speed and direction:

log(rt��) � b1

vt,1

�vt�
� b2

vt,2

�vt�
� b3

vt,3

�vt�
� bs�vt� � b0, (15)

where rt is the firing rate at timestep t, vt � [vt,1 vt,2 vt,3] is a 3D reach
velocity, and �vt� is the corresponding reach speed. The {b} are
coefficients fit to data. For a given unit, the time lags, �, in the
direction-only and speed-only models were chosen to be the lags at
which that unit achieved its MDI and MSI, respectively, from the
information analysis over the real data. In the velocity and indepen-
dent speed and direction models, the time lags were chosen to be the
lag associated with the larger quantity between that unit’s MDI and
MSI. After simulating these firing rates, we then generated noisy spike
counts, yt, according to

yt���vt � Poisson(rt�� · 	t), (16)

where �t � 30 ms matched the binning used in the information and
decoding analyses.

Neural Decoding for BMI Control

Two-dimensional cursor velocity was decoded from binned spike
counts using either a VKF or a novel SDKF. For both decoders, 2D
cursor positions were computed by integrating the corresponding
decoded velocity.

Velocity-only Kalman filter. For BMI control, we implemented a
Kalman filter (Kalman 1960) to predict intended movement velocity
given a sequence of recorded neural activity. Kalman filter predictions
combine knowledge from a trajectory model describing the relation-
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ship between velocities from one timestep to the next, and from an
encoding model describing the relationship between spike counts and
intended velocity. When trajectory and encoding models are linear-
Gaussian, the Kalman filter velocity predictions are optimal with
respect to mean square error of predicted velocities.

The trajectory model underlying the Kalman filter takes the form

vt�vt�1 � N(Avt�1, Q), (17)

where vt � �2 is the velocity intention at timestep t, A � �2�2 maps
beliefs about the velocity at timestep t � 1 into beliefs for timestep t,
and Q � �2�2 is a covariance matrix describing the uncertainty
corresponding to this mapping. N denotes a Gaussian (normal) distri-
bution. The encoding model is defined as

yt�vt � N(Cvt � d, R), (18)

where yt � �q is the vector of spike counts simultaneously recorded
across q units at timestep t, C � �q�2 maps intended velocity to
expected spike counts, d � �q accounts for baseline firing rates, and
R � �q�q is the observation noise covariance. We fixed A � I and
estimated Q, C, d, and R (constrained to be diagonal) via linear
regression over data collected from a calibration session (described
below). In every session, these estimated parameters resulted in a
stable VKF decoder. The details of the VKF algorithm and its stability
are provided in the Appendix.

Kalman filters have been applied effectively toward decoding
movement kinematics from neural activity in the context of both
offline reconstruction of natural arm movements (Wu et al. 2006) and
online control of a BMI (Gilja et al. 2012; Hochberg et al. 2012; Kim
et al. 2008; Koyama et al. 2010; Li et al. 2011; Orsborn et al. 2012;
Wu et al. 2004). When implementing a Kalman filter, one must select
the state variables to be modeled by the trajectory and encoding
models. Previous studies have shown that Kalman filters with a
velocity-only state representation provide superior online BMI control
compared with a position-only state representation (Kim et al. 2008).
Thus, as a baseline for comparison, we implemented a velocity-only
Kalman filter (VKF).

Training data for building the VKF decoder were collected during
a closed-loop calibration session prior to each experiment (Chase et al.
2012; Velliste et al. 2008). Calibration sessions consisted of center-
out trials with decreasing levels of assistance, whereby cursor veloc-
ities orthogonal to the center-to-target direction were automatically
attenuated. In an initial block of eight trials, model parameters were
chosen randomly and complete error reduction was applied, resulting
in straight-to-target cursor trajectories. VKF parameters were fit to the
recorded neural activity and velocity intentions, which were assumed
to be in the center-to-target direction with constant speed. For this
initial fitting step, each trial contributed roughly 30 timesteps of both
intended velocity and spike count vectors (recorded in 33-ms non-
overlapping bins). This initial quantity of data appears to be sufficient
for determining an initial set of VKF parameters. In the second block
of eight trials, these VKF parameters were implemented and error
attenuation was decreased slightly. We repeated this cycle for typi-
cally five blocks (40 trials), fitting new VKF parameters after each
block using all previous trials. All error attenuation was eliminated by
the last calibration block such that the subject operated the BMI under
complete neural control.

A speed-dampening Kalman filter for closed-loop BMI control. The
SDKF extends the VKF by enforcing a tradeoff between movement
speed and magnitude of angular velocity. When cursor trajectories
exhibit large absolute angular velocities, SDKF constrains decoded
speeds to be closer to 0 in a graded fashion depending on the
magnitude of the angular velocity. SDKF implements this tradeoff
through an adaptive trajectory model

vt�vt�1 � N(
tAvt�1, Q), (19)

where 
t � [0, 1] is a time-varying speed-dampening factor that is
given values near 1 when the cursor trajectory has been straight and

shrinks toward 0 as angular velocity increases. The details of the
SDKF algorithm are provided in the Appendix. In a given experimen-
tal session, the remaining decoding parameters for SDKF, A, Q, C, d,
and R, were identical to those used for VKF.

Simulated Closed-Loop Control of Movement

To establish a link between the information analyses and the
closed-loop BMI control experiments, we simulated closed-loop BMI
control. Two-dimensional control of a cursor was driven by a simu-
lated population of neurons with log-linear tuning curves parameter-
ized by the independent speed and direction model of Eq. 15. Param-
eters of these tuning curves were fit to neural and kinematics data
recorded in the arm reaching task (data set F081909) between target
onset and target acquisition. Speed and direction data were not
discretized, and movement directions were truncated from 3D to 2D
to match the 2D BMI task. Simulated BMI movements were decoded
using VKF, which was trained on these same arm reaching kinematics
and corresponding simulated spike counts. The simulated task was
matched to the real BMI behavioral paradigm with respect to target
positions, target hold requirements, and conditions for task success.

At each simulated timestep, desired kinematics were chosen based
on target position and the most recent cursor position. Desired
movement direction was straight from the most recent simulated
cursor position to the target position. Desired movement speed de-
pended on the distance between the target and the most recent
simulated cursor position. Desired speed was 0 if the cursor and target
visibly overlapped by at least one-half of the cursor radius. Otherwise,
desired speed was drawn from a normal distribution whose mean and
standard deviation were matched to real arm movement data for
similar cursor-to-target distances. Simulated spike counts were drawn
from Poisson distributions with rates determined by these desired
kinematics and the log-linear tuning curves. Finally, a cursor update
was decoded from the simulated spike counts using VKF.

RESULTS

Here we present our findings from the information, regres-
sion, and decoding analyses over the arm reaching data. The
results consistently suggest that movement speed is substan-
tially more difficult than movement direction to extract from
the moment-by-moment details of neural firing in motor cor-
tex. Next, we link these findings to BMI control, which we
show to suffer from inadequate speed control, especially with
respect to stopping, relative to direction control. Finally, we
demonstrate improved BMI stopping and speed control under
a novel BMI decoder, the speed-dampening Kalman filter
(SDKF).

Single-Unit Activity Carries More Information About
Direction Than About Speed

Spike trains from single units contained speed- and direc-
tion-related information in a variety of forms. Figure 2 shows
speed and direction information as a function of lag for a
number of representative units. Direction information curves
were unimodal for nearly every recorded unit, whereas it was
not uncommon for speed information curves to be bimodal.
These bimodal speed information curves are likely a reflection
of task-induced autocorrelation in movement speed (e.g.,
through bell-shaped speed profiles). Most units’ MDI and MSI
values were significant relative to null information levels,
although some units were exceptions, as detailed in Table 1.
The number of units with significant MDI was larger than the
number of units with significant MSI for all nine experiments.
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Figure 3 shows the lags at which each unit achieved its MDI
and MSI. Optimal lags for direction information were most
often causal, meaning information-carrying spikes tended to
lead movement direction. Optimal lags for speed-related infor-
mation were casual and acausal in roughly equal frequencies.
Many units thus had substantial discrepancies between their

optimal direction and speed lags, and, on average, optimal
direction lags were more positive (i.e., causal) than optimal
speed lags within individual units.

Perhaps most striking, however, were the differences be-
tween MDI and MSI values within individual units. Of 119
units from a representative data set (F081809), 45 (38%) had

Fig. 2. Information curves for 40 representative units from a single experiment (F081909). Mutual information between spike counts and movement direction
(blue) or movement speed (red) was computed as a function of time lag between neural activity and kinematics. Triangles indicate lags at which maximal direction
information (MDI) and maximal speed information (MSI) were achieved and were omitted if those information values were not significantly greater than expected
by chance (permutation test, P � 0.001). For positive lags, neural activity led kinematics in the information calculation. Shaded regions represent 95% confidence
intervals (bootstrap). At top right of each panel, double asterisks denote significant MDI 	 MSI (blue) or MSI 	 MDI (red) (bootstrap, P � 0.001).

Table 1. Numbers of units with significant MDI and MSI across all recorded units from each experiment

Data Set Speed and Direction Direction Only Speed Only Neither Total Units

F081309 99 (83) 10 (8) 5 (4) 5 (4) 119
F081709 98 (82) 10 (8) 6 (5) 5 (4) 119
F081809 95 (80) 11 (9) 5 (4) 8 (7) 119
F081909 95 (80) 14 (12) 8 (7) 2 (2) 119
T110410 43 (66) 10 (15) 1 (2) 11 (17) 65
T110510 53 (69) 15 (19) 1 (1) 8 (10) 77
T110910 50 (61) 18 (22) 3 (4) 11 (13) 82
T111010 38 (58) 16 (24) 1 (2) 11 (17) 66
T111210 34 (69) 5 (10) 4 (8) 6 (12) 49

Values are numbers of units with significant maximal direction information (MDI) and maximal speed information (MSI) across all recorded units from each
experiment. Percentages of total units are given in parentheses.
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MDI values that were significantly greater than their MSI
values, whereas only 12 (10%) showed the opposite relation
(Fig. 4A). Consistent with this breakdown, we found signifi-
cantly more direction-related information than speed-related
information on average across all recorded units with signifi-
cant differences in MDI and MSI from this data set (Fig. 4B).
This breakdown of unit types was consistent across data sets
from both subjects, with 3.01 � 0.63 times as many direction-
dominated cells as speed-dominated cells (see Table 2). For all
monkey F data sets, average MDI was significantly greater than
average MSI (P � 0.001, 1-tailed t-test). For monkey T data
sets, average MDI was always greater than average MSI, but

because of lower unit counts, these differences were statisti-
cally significant for only three of five data sets (P � 0.05,
1-tailed t-test).

To aid in interpreting this uneven breakdown of direction-
vs. speed-encoding units, we simulated spike counts from
several relevant encoding models. We fit each model to the
neural activity and movement kinematics (nondiscretized)
from the representative data set (F081909) and then simulated
spike counts using the same real kinematics. As expected,
when we simulated from the direction-only encoding model,
no units were identified with MSI significantly greater than
MDI (Fig. 5A), and similarly, when we simulated from the
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speed-only encoding model, no units were identified with MDI
significantly greater than MSI (Fig. 5B). The information
pattern from the velocity-encoding population (Fig. 5C) resem-
bled that from the direction-only population, but since speed is
a fundamental component of velocity, MSI values were
slightly larger in the velocity-encoding population. Even so,
none of these simulated units had an MSI value that was
significantly larger than its corresponding MDI value.

The information signature from the simulated speed- and
direction-encoding population (Fig. 5D) best resembled that of

the real data (Fig. 4A), with a large number of units with
significantly greater MDI than MSI in addition to a small
number of units showing the opposite trend. This similar
breakdown of direction- vs. speed-dominated units should be
expected since the data were generated from a model fit to the
real data. The direction-only, speed-only, and velocity encod-
ing models result in theoretically prescribed distributions of
MDI and MSI values. This distribution for the independent speed
and direction model, however, can favor either direction or speed
unit types, depending on the data. Also, note that the distributions
of MDI and MSI values from these simulations are biased toward
slightly smaller values than those from the real data in Fig. 4A.
These differences speak to the fact that the real neural activity
contains movement information not captured by the parametric
tuning models used in these simulations [as observed, for exam-
ple, by Churchland and Shenoy (2007)], yet this information is
captured by the mutual information computations employed over
the real neural data in this analysis.

Tuning indices (TI) from the linear regression analysis,
defined as �R2 from fits to the tuning models of Eqs. 2–4, are
shown in Fig. 6 as a function of lag between kinematics and
neural activity. Direction TI curves closely matched the direc-
tion information curves of Fig. 2, and similarly, speed TI
curves closely matched the speed information curves. Velocity
TI curves typically had maxima that exceeded both the corre-
sponding speed and direction TI maxima (although a few

Table 2. Frequencies of units with significantly greater MDI than
MSI and vice versa

Data Set MDI 	 MSI MSI 	 MDI Total Units

F081309 41 (34) 11 (9) 119
F081709 40 (34) 13 (11) 119
F081809 40 (34) 15 (13) 119
F081909 45 (38) 12 (10) 119
T110410 15 (23) 7 (11) 65
T110510 26 (34) 7 (9) 77
T110910 29 (35) 9 (11) 82
T111010 25 (38) 9 (14) 66
T111210 12 (24) 6 (12) 49

Values are frequencies of units with significantly greater MDI than MSI and
vice versa (P � 0.001, bootstrap). Percentages of total units are given in
parentheses.
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exceptions can be found). These velocity TI curves were more
closely matched to the TI and information curves of direction
than of speed but did not appear to be a simple function of one
or the other. We note that TI values for direction and velocity
are not directly comparable to those for speed because of
differences in numbers of parameters between models and
because TI values were computed over the same data used to
fit the models. Rather, this analysis was motivated 1) to help
carry over intuition from previous studies framed from a
regression perspective and 2) to demonstrate that the appear-
ance of velocity tuning does not necessarily predict the quan-
tity of speed- or direction-related information that may be
extracted from a population.

Population Activity Enables Better Predictions of Direction
Than of Speed

Results from the information analysis suggest that, at least in
single-unit activity, the encoding of movement speed is sub-
stantially weaker than that of movement direction. To deter-
mine whether this finding holds true when considering the joint
population activity, we applied a series of PNB classifiers
toward predicting kinematics from population responses. Clas-
sifiers were trained to predict discretized kinematics based on

1) a single 30-ms spike count aligned in time with movement
kinematics (instantaneous) or 2) the entire causal history of
nonoverlapping 30-ms spike counts beginning 300 ms before
the movement kinematics (history). Direction predictions were
significantly more accurate than speed predictions under both
the instantaneous and history conditions and across all data
sets. For the representative data set detailed in previous sec-
tions (F081909), instantaneous direction accuracy was 26.0%,
whereas speed accuracy was only 9.8%, as shown in Fig. 7, A
and G. Incorporating spike count history into predictions for
this data set increased direction accuracy to 38.7%, whereas
speed accuracy only increased to 13.1%. Although these pre-
diction accuracies may seem low on an absolute scale, they are
actually relatively high given that predictors had to choose
from 26 possible labels for both speed and direction, and as
such, chance prediction accuracy was only 3.8%. These trends
were consistent across all data sets, with direction accuracy
2.34 � 0.25 times higher than speed accuracy for instantaneous
predictions and 2.80 � 0.23 times higher for predictions based
on spike count history. Prediction accuracies for all datasets are
tabulated in Table 3.

To summarize the full distribution of predictions, we also
computed mutual information between predicted and actual
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Fig. 6. Linear regression analysis of the same 40 units from Fig. 2. Tuning indices, defined as �R2 from linear regressions, are shown for direction-only (blue),
speed-only (red), and velocity (black) tuning models (Eqs. 2, 3, and 4, respectively).

419MOTOR CORTICAL CONTROL OF MOVEMENT SPEED

J Neurophysiol • doi:10.1152/jn.00391.2013 • www.jn.org



discretized kinematics. As shown in Fig. 7, B and H, direction
predictions carried more information than did speed predic-
tions. As a performance metric, information complements
prediction accuracy in that information provides a summary of
the structure of predictions, including both the predictions that
matched the actual kinematics as well as those that did not.
Specifically, if two sets of predictions have the same fraction of
correct predictions, information will be higher for the set

whose incorrect predictions are less uniformly distributed
across labels. In this regard, information can appropriately
account for near misses, for example, if a classifier fre-
quently predicts an incorrect label corresponding to a speed
that is only slightly higher than the speed corresponding to
the true label.

Confusion matrices are shown in Fig. 7, C and D, and Fig.
7, I and J. Whereas adjacent speed labels correspond to
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Table 3. PNB classification accuracies for speed and direction across all data sets

Monkey Data Set No. of Units

Instantaneous History

Direction
accuracy, % Speed accuracy, %

(Direction
accuracy)/(speed

accuracy)
Direction

accuracy, % Speed accuracy, %

(Direction
accuracy)/(speed

accuracy)

F 081309 119 26.3 10.5 2.5 38.8 11.4 3.4
F 081709 119 25.8 9.2 2.8 35.8 11.5 3.1
F 081809 119 24.9 9.3 2.7 36.0 12.8 2.8
F 081909 119 26.0 9.8 2.7 38.7 13.1 3.0
T 110410 65 17.3 7.5 2.3 29.8 10.0 3.0
T 110510 77 17.1 6.8 2.5 28.0 11.0 2.5
T 110910 82 17.2 6.8 2.5 29.2 10.7 2.7
T 111010 66 15.2 7.1 2.1 27.4 9.8 2.8
T 111210 49 13.2 7.0 1.9 24.8 10.1 2.5

Instantaneous Poisson naive Bayes (PNB) predictions are based on 30-ms spike counts time-aligned with kinematics. History PNB predictions are based on
a 300-ms causal history of spike counts in nonoverlapping 30-ms bins. Chance prediction accuracy is 3.8% for instantaneous and history predictions of both speed
and direction.
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adjacent speed ranges, no such natural ordering exists for
three-dimensional directions. To compensate, we provide col-
umn-reordered confusion matrices in Fig. 7, E and F, and Fig.
7, K and L, whereby the rows in each column have been sorted
by angle (direction) or absolute difference (speed) between
kinematics corresponding to actual and predicted labels. The
confusion matrices show that incorrect prediction labels typi-
cally clustered around the correct label for both speed and
direction. These distributions were tighter for direction than for
speed, resulting in greater information values for direction than
for speed.

We chose to include causal neural activity as the input to
classifiers to mimic the real-time prediction problem that a
BMI is required to solve. However, the information analysis
revealed maximal speed information at acausal lags for many
units (Fig. 3). When repeating the decoding analysis using both
the causal and acausal histories of neural activity, we found
prediction accuracies were largely unchanged compared with
the corresponding accuracies using only casual neural activity.

To ensure that our discretization procedure is not responsible
for these discrepancies between direction and speed prediction
accuracies, we analyzed speed prediction accuracies as a func-
tion of speed bin widths used for discretization (data not
shown). For predictions based on instantaneous spike counts,
there was never a significant effect of bin width on prediction

accuracy. For predictions based on spike count history, bin
width had a small but significant effect on two of nine analyzed
data sets; however, these two experiments had low unit counts
relative to the other experiments.

To determine the effect of population size on prediction
accuracy, we performed a unit-dropping analysis. As expected,
predictions become more accurate with increased population
size for both movement speed and movement direction (Fig. 8A).
We note that the confidence intervals in the latter portion of the
neuron-dropping curves (i.e., for numbers of units approaching
the actual recorded population size) will be biased to be smaller
than they actually are due to the similarity across draws from
the actual population. However, even when accounting for this,
extrapolation of these accuracy curves beyond the numbers of
units we recorded suggests that, had we recorded a larger
sample of neurons, speed prediction accuracy would likely
remain substantially lower than that of direction predictions
(data not shown).

We also computed PNB prediction accuracy as a function of
the number of contributing units for simulated population
recordings (Fig. 8, B–E). Consistent with the single-unit infor-
mation analyses, the independent speed- and direction-encod-
ing model resulted in a population with PNB prediction accu-
racies best matched to those of the real data. The key corre-
sponding features are 1) the ratio of direction-to-speed
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Fig. 8. PNB prediction accuracy for speed (red) and direction (blue) as a function of the number of units contributing to predictions. For the 119-unit case, there
is only 1 unique combination of all 119 units. For the 1-unit and 118-unit case, there are 119 unique unit combinations. In these cases, prediction accuracies were
computed for all possible unit combinations. For each intermediate number of units, 1,000 randomly selected unit combinations were assessed. Colored lines and
shaded regions represent median accuracies and 95% of accuracies thereabout, respectively. Black lines indicate chance prediction accuracies. A: real data from
experiment F081909. B: simulated data from the direction-only encoding model. C: simulated data from the speed-only model. D: simulated data from the
velocity model. E: simulated data from the independent speed and direction model.
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prediction accuracy across population size and 2) the nearly
saturated speed prediction accuracy when all units are incor-
porated into predictions. However, this simulated population
gives systematically lower prediction accuracies for both speed
and direction relative to those given by the real recorded data.
This discrepancy again speaks to the fact that the real recorded
neural data contain movement information not captured by the
parametric tuning models used for these simulations and that
PNB classifiers are capable of extracting this information from
neural activity.

As described, the information and prediction analyses have
treated speed and direction separately, characterizing each
kinematic variable’s relationship to neural activity independent
of the other variable. We also performed the prediction anal-
ysis using a joint discretization scheme whereby classifiers
were trained to jointly predict speed and direction from each of
262 possible pairs of discretized speeds and directions. Because
these classifiers required learning many more parameters, some
data sets were not large enough to support the analysis. For the
data sets that were large enough, marginal prediction accura-
cies for direction were again significantly greater than those for
speed, although overfitting of the increased numbers of param-
eters produced absolute accuracies that were slightly lower
than those reported in our main results (data not shown). To
mitigate overfitting, we restricted the analysis to in-plane trials
and decreased the number of speed and direction bins to eight
each. This joint decoding analysis was well defined for all data
sets and produced similar results to an analogous analysis
where speed and direction were each decoded independently
(data not shown).

Difficulties Extracting Speed May Explain Deficiencies in
BMI Control

Previous BMI studies have noted subjects’ difficulties in
controlling BMI cursor speeds, especially with respect to
stopping and holding a cursor at a desired target location
(Carmena et al. 2003; Ganguly and Carmena 2009; Gilja et al.
2012; Hochberg et al. 2006; Kim et al. 2008). To align with
these studies, we implemented a BMI cursor control task using

a velocity-only Kalman filter (VKF), a state-of-the-art neural
decoder for BMI applications. Example cursor trajectories
under VKF are shown in Fig. 9, as well as in Supplemental
Video 1. (Supplemental material for this article is available
online at the Journal of Physiology website.) During experi-
mental sessions when all trials had minimal target hold require-
ments (50 ms), cursor trajectories were swift and straight into
the targets (Fig. 9A). To quantify the subject’s ability to crisply
stop at targets, we introduced substantial hold requirements
such that trial success required the cursor to overlap the target
for a randomized hold time (0–600 ms), and a trial was failed
if the cursor exited this acceptance region during the hold time.
During these experimental sessions with substantial target hold
requirements, the subject demonstrated poor control of move-
ment speed under VKF, as evidenced by frequent trial failures
due to overshooting through the target (Supplemental Video 1).
Successful trials often involved meandering trajectories (Fig.
9B) such that cursor speed was relatively low upon initial
acquisition of the target. When target hold requirements were
minimal, this meandering behavior was not observed, and
cursor speeds were substantially higher upon target acquisition
(Fig. 10), suggesting that the subject adopted a VKF-specific
strategy whereby stable stops were replaced by slow move-
ments over the target. Consistent with this strategy, the sub-
ject’s performance under VKF decreased substantially as target
hold time requirements increased (see Fig. 12A).

We have shown that 1) in single-trial arm reaches, speed
information is relatively deficient in motor cortical activity
compared with the abundant levels of direction information,
and 2) motor cortical activity alone cannot support precise
control of BMI cursor stability under VKF. Several studies
have highlighted the differences between closed-loop BMI
control and offline analyses of arm control (Chase et al. 2009;
Lebedev et al. 2005). To establish a link between the apparent
deficiency of speed information offline and deficient speed
control online, we simulated closed-loop BMI control as de-
coded by VKF. The underlying simulated neural population
had log-linear tuning to the independent speed and direction
model (Eq. 15), which was fit to real recorded neural activity

VKF

50 ms hold req.

A

VKF

300−600 ms hold req.

B

SDKF

300−600 ms hold req.

C

Fig. 9. Example brain-machine interface (BMI) cursor trajectories from successful trials. Dark circles show target sizes as displayed during experiments. Light
circles denote cursor-target overlap zones that take into account the cursor radius (not shown). A: velocity-only Kalman filter (VKF) control with minimal target
hold requirements (data set F072310). B: VKF control with target hold requirements between 300 and 600 ms (data set F062810). C: speed-dampening Kalman
filter (SDKF) control with target hold requirements between 300 and 600 ms (data set F062810).
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from the arm reaching experiments. Thus the simulated popu-
lation encoded substantially more information about desired
direction than about desired speed. As shown in Fig. 11,
simulated control was consistent with the real VKF BMI
behavioral data in that success rates decreased rapidly as target
hold requirements increased. This result suggests that the
amount of speed information found during arm movements is
consistent with the subject’s deficient ability to hold at targets,
and furthermore, that the amount of speed information required
for stable stopping under VKF BMI control exceeds the
amounts that we found in recorded motor cortical activity.

SDKF Restores Stopping Ability During Closed-Loop BMI
Control

From the information and prediction analyses, we found our
ability to extract speed-related information from motor cortical
activity to be relatively poor, despite using methods that
require only mild assumptions about how movement speed
might be encoded in neural activity. The resulting implication
for BMI is that, even if it were possible to perfectly extract the
limited speed information available in recorded neural activity,
this may never enable reliable closed-loop control of BMI
cursor speed because the encoding for movement speed is
simply not that strong. We designed the SDKF to overcome
this limitation in the decodability of movement speed. SDKF
leverages the subject’s reliable control of movement direction
to improve control of movement speed by implementing a
tradeoff between speed and angular velocity in the decoded
velocity signal.

Example cursor trajectories under SDKF are shown in Fig.
9C, as well as in Supplemental Video 2. SDKF significantly
enhanced the subject’s ability to stop and hold for the duration
of target hold requirements, as shown in Fig. 12A. For target
hold times between 300 and 600 ms, success rates were 1.7
times higher under SDKF control than under VKF control.
Cursor movements under SDKF were typically straight toward
the target, rather than meandering (Fig. 9), indicating that the
subject could instruct a crisp stop upon acquiring the target.
We applied a constant speed gain to decoded SDKF velocities
such that movement times were matched between VKF and
SDKF trials (Fig. 12B). In this setting, SDKF achieved im-
proved cursor stability at targets with movement times that
were not significantly different from VKF movement times for
hold requirements longer than 100 ms (for hold requirements
under 100 ms, movements did not need to slow down substan-
tially at targets to achieve task success).

SDKF improves BMI performance by leveraging natural
features of goal-directed movements, as well as by potentially
encouraging strategies specific to the feedback equations de-
fining SDKF. Goal-directed movements, in both natural reach-
ing and BMI settings, tend to begin with a high-speed, straight
ballistic phase and tend to end with low-speed corrective
movements relying heavily on sensory feedback. SDKF detects
these corrective movements in the form of increased absolute
angular velocity and correspondingly slows or stops the BMI
cursor. This feature of SDKF is akin to a “hockey stop,”
whereby a fast-moving hockey player makes a quick rotation
of the skates to bring about a crisp stop on the ice. For SDKF,
the result is a BMI cursor that automatically slows down near
the target in response to corrective movements, in contrast to
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Fig. 10. Cursor speed under VKF control as a function of distance to target
center when target hold requirements were 50 ms (dashed gray line) and during
separate sessions when target hold requirements were 300–600 ms (solid gray
line). Target acquisition began 14 mm from target center (dashed black line).
Data are shown for successful trials only.
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Fig. 11. Success rate as a function of target hold requirement for real BMI
experiments under VKF control (solid line) and for simulated BMI control
(dashed line). Error bars indicate 95% confidence intervals (Bernoulli process).
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Fig. 12. Comparison of BMI control under SDKF (black) and VKF (gray).
A: success rate as a function of target hold requirement for all trials where an
initial target acquisition was achieved. VKF data are replicated from Fig. 11.
Trials were deemed failures and terminated if the cursor exited the target
region before the hold requirement was satisfied. Error bars indicate 95%
confidence intervals (Bernoulli process; *P � 0.01; **P � 0.001). B: move-
ment times, defined as the elapsed time between target onset and initiating the
target hold period, as a function of target hold requirement for all successful
trials. Error bars denote �SE (*P � 0.01, Wilcoxon test).
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the overshooting behavior typically produced by standard BMI
decoders. Figure 13 shows decoded angular velocity for SDKF
and VKF as a function of distance to target. For both decoders,
absolute angular velocities are low during the ballistic phase
when the cursor is far from the target, and as the cursor
approaches the target, angular velocities increase. Interest-
ingly, SDKF trajectories showed larger angular velocities near
the target compared with VKF, suggesting that the subject may
have adopted a strategy of exaggerating turns near the target
because doing so would be decoded by SDKF as a crisp
“hockey stop.”

SDKF was designed to improve online BMI control of
cursor speed. However, SDKF’s performance benefits for on-
line control, especially those that may be attributable to SDKF-
specific control strategies, need not result in improved perfor-
mance when reconstructing arm movements offline. We ap-
plied both SDKF and VKF toward offline reconstruction of
arm velocity and found root-mean-squared reconstruction error
to be nearly twice as large for SDKF relative to that for VKF
(Fig. 14). This result highlights the fact that decoding algo-
rithms with superior performance in online cursor control do
not necessarily achieve superior performance in offline recon-
struction, and as such, optimizing neural decoders offline
cannot always be expected to yield the best decoders for online
BMI applications (Chase et al. 2009).

DISCUSSION

We asked whether the moment-by-moment details of move-
ment speed could be extracted from motor cortical activity, and
although we did find significant speed-related activity, our
ability to extract movement speed was substantially worse than
our ability to extract movement direction. In single-unit infor-
mation analyses, we found roughly threefold higher frequen-
cies of direction-dominated units compared with speed-domi-
nated units. In population decoding analyses, we were able to
predict movement direction with more than double the accu-
racy of corresponding speed predictions. These results are
problematic for BMI systems, which depend on the ability to
extract kinematic variables, including movement speed, from

population activity on a moment-by-moment basis. To address
this problem, we designed a BMI decoding algorithm, SDKF,
which increased the ability to stop and hold the BMI cursor at
instructed targets by 70.8%.

Information and Prediction Analyses: Sensitivity to Modeling
Choices

The information and prediction analyses required specific
data processing to ensure a fair comparison of the extractability
of speed vs. direction from neural activity. Because speed and
direction are continuous-valued quantities expressed in differ-
ent units and with differing numbers of degrees of freedom, we
discretized speed and direction such that their discretized
distributions had matched marginal statistics. We chose a
discretization that resulted in roughly equal numbers of data
points assigned to each of 26 speed labels and each of 26
direction labels.

With 26 discretization labels, chance prediction accuracy is
1/26 � 3.8% for both speed and direction, i.e., the accuracy of
the best predictor that does not have access to the underlying
neural activity. We chose to use 26 labels because there were
26 targets in the reaching task. Movement speeds lie in a
continuum with no natural set of boundaries, and thus the
number of speed labels must be arbitrary. When the prediction
analysis was repeated with different numbers of discretization
labels, {10, 15, 20, 40}, the results were consistent with those
that we report when using 26 discretization labels. The num-
bers of units with significantly greater MDI than MSI remained
consistent across all data sets, as did the numbers of units
showing the opposite trend. Similarly, direction prediction
accuracy was significantly higher than speed prediction accu-
racy for all data sets.

A logical alternative binning scheme is to discretize move-
ment speeds using bins of constant width, which would result
in substantially different numbers of data points across speed
labels. With this alternative discretization scheme, we found
that a single low-speed label can account for up to 20% of data
points. Here, a chance predictor that always predicts the most
frequent speed label will have an accuracy of 20% without
considering the neural activity, thus complicating the ability to
compare speed predictability with direction predictability.
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Fig. 13. Absolute angular velocity, |�t|, as a function of cursor-to-target
distance for SDKF (black) and VKF (gray). Error bars denote �SE (*P �
0.01; **P � 0.001, Wilcoxon test). For each distance value, absolute angular
velocities were first averaged within each trial, and then a mean and SE were
computed across trials.
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Fig. 14. Root-mean-squared errors for offline SDKF- and VKF-based decoding
of arm movements. Errors were first averaged within each trial, and then a
mean and SE were computed across trials. Error bars denote �SE. SDKF-
decoding error was significantly greater than VKF-decoding error (**P �
3.2�20, 1-tailed t-test).
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Even so, we found that speed prediction accuracy under this
alternative discretization scheme was only a few percent better
than chance.

Finally, for simplicity, the information and prediction anal-
yses ignore temporal autocorrelation in the kinematics data.
For the center-out reaching task, movement direction tends to
be very similar across timesteps in a single trial. Movement
speed tends to have more temporal variability, because speeds
tend to have bell-shaped profiles throughout each trial. Incor-
porating such structure ought to improve direction prediction
accuracy by more than it would improve speed prediction
accuracy, thus only conservatively biasing our findings.

Movement Representations in Motor Cortex

Previous studies have identified speed-related information in
the activity of single motor cortical neurons (Churchland et al.
2006; Ifft et al. 2011; Moran and Schwartz 1999b; Schwartz
1992, 1994), as well as in motor cortical signals recorded from
intracortical local field potentials (Heldman et al. 2006), elec-
trocorticography (Anderson et al. 2012), magnetoencephalog-
raphy (Jerbi et al. 2007), positron emission tomography
(Turner et al. 2003), and functional magnetic resonance imag-
ing (Rao et al. 1996). We found speed-related information as
well, but when quantified relative to direction-related informa-
tion, the extracted speed signals appear surprisingly weak. We
can think of three potential interpretations of these results. The
first is that instantaneous speed is robustly represented in motor
cortex, but our analysis techniques were incompatible with the
details of the neural encoding. The second is that the motor
cortical representation of instantaneous speed, although weak
relative to direction, is strong enough to enable robust control
of movement speed. The third is that instantaneous speed is not
robustly represented in motor cortex, and other factors that we
did not consider combine to implement movement speed. We
discuss each of these possibilities in turn below.

If motor cortex does encode the fine-timescale details of
movement speed, why did our analyses not reveal a robust
speed signal? One possibility is that the subset of units carrying
reliable speed information might change depending on other
kinematic parameters such that the population of neurons
actually controlling movement speed dynamically changes. For
example, it has been demonstrated that there is an interaction
between direction and speed such that speed modulations are
only apparent in the firing rates of a neuron during movements
in the preferred direction of the neuron (Moran and Schwartz
1999b; Schwartz 1992). Decoding techniques that explicitly
account for such dependencies might enable a more robust
extraction of movement speed. Another possibility is that
speed may be encoded more broadly across motor cortical
populations that are substantially larger than those recorded in
this study. Our unit-dropping analysis in Fig. 8A shows a
shallow slope in the speed accuracy curve as more neurons
were added to the decoder, suggesting that even if we had
recorded from greater numbers of neurons, speed predictions
might still be substantially less accurate than direction predic-
tions. However, array recordings are typically biased toward
monitoring populations of neurons located on cortical gyri, and
it may be that speed information can be more readily extracted
from neurons in the less accessible banks of cortical sulci. A
third possibility is that speed is carried through a different

neural code than we assumed. We applied methods to identify
kinematic information in spike counts of motor cortical neu-
rons. Although suggestive, our results leave open the possibil-
ity that movement speed is encoded in patterns of spike timing
rather than spike counts. Spike timing information has been
found in other systems, such as the rat whisker system (Panzeri
et al. 2001), the mouse visual system (Jacobs et al. 2009), and
the primate auditory system (Chase and Young 2008). How-
ever, reports of spike timing codes in the motor system have
been limited (although, see Hatsopoulos et al. 1998). Finally,
we note that the center-out task does not impose explicit
requirements on movement speed throughout a reach, and it
might be possible to design a reaching task that better modu-
lates population activity with respect to movement speed.

Could the amount of speed information we found be enough
to support precise control of arm speed? It is difficult to know
how much information is necessary to enable the degree of
speed control that our subjects exhibited during arm reaching.
Furthermore, control over the moment-by-moment details of
speed was not an explicit requirement in the arm reaching task.
Rather, our subjects simply had to move to the target within a
specified amount of time and maintain stability in the target for
a specified hold period. Further experiments will be required to
determine how much information is necessary to enable to
precise control of speed in arm movements. In simulation,
however, we found that populations of neurons carrying the
amounts of speed information that we measured in real neurons
demonstrated deficiencies in cursor stability at targets similar
to those demonstrated in real BMI control by a monkey (Fig.
11). Although the simulation analysis was framed in the
context of BMI, we believe it also has implications for natural
movement control. Since the simulated neural encoding was fit
to real neural activity underlying arm movements, these results
suggest that arm movements rely on more than a readout of
movement kinematics from motor cortical activity.

A third interpretation is that motor cortex is not the sole
arbiter of movement speed, but may coordinate with other
brain areas that contribute toward movement speed control
(Tan et al. 2009). The role of M1 in driving movements has
been extensively debated (for reviews, see Schwartz 2007;
Scott 2003). Whereas much evidence has been presented in
support of M1 encoding instantaneous movement details
(Georgopoulos et al. 1982; Morrow and Miller 2003; Scott and
Kalaska 1997), several studies have suggested a more dynam-
ics-based encoding (Aflalo and Graziano 2007; Churchland et
al. 2012). For example, it may be that M1 specifies a desired
peak speed for a particular movement and that the motor
periphery is responsible for generating the fine-timescale dy-
namics of movement speed. More generally, the speed signal in
cortical activity may not be isomorphic with arm speed. The
signal from motor cortex must be understood as only one factor
combined with additional neural processing in the many other
neural structures with speed-dependent activity, transformed
by musculoskeletal action to produce arm movement. A better
understanding of motor cortical operations and their contribu-
tion to arm movement will make it possible to develop more
accurate extraction algorithms for decoding the details of this
behavior.

An important distinction in the present study is that we
sought to quantify the information in single-trial, simultane-
ously recorded population neural activity about kinematics
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during a single 30-ms timestep, because this is the relevant
timescale for online BMI decoding. Moran and Schwartz
(1999b) identified a robust speed representation in trial-aver-
aged data generated from sequentially recorded units whose
responses were combined as a population. We repeated that
analysis with the data from the current study and also found a
robust speed representation (data not shown). This correspon-
dence suggests that although speed is encoded across sequen-
tially recorded populations, it is difficult to extract from pop-
ulations of simultaneously recorded units in the real-time
setting of BMI, possibly because of correlated noise in single-
trials that can be suppressed when averaging across trials.

Implications for BMI Control

Similar to natural reaching movements, BMI cursor move-
ments require precise speed control. Typical approaches to
decoding BMI movements assume a relatively simple encoding
of speed (e.g., linear through a velocity tuning model as in
VKF). We found that an independent speed and direction
model matched the neural data better than direction-only,
speed-only, and velocity-only models. However, the informa-
tion and prediction analyses in this study imply that adjusting
these modeling assumptions, e.g., by using a nonlinear encod-
ing model, may still result in limited BMI performance with
respect to decoded speed because the moment-by-moment
details of neural firing do not appear to carry requisite levels of
speed information.

To overcome the apparent limitation in available speed
information, we designed SDKF using a novel approach to-
ward achieving high-fidelity control of speed in a BMI. SDKF
incorporates a well-controlled neural signal, that of movement
angular velocity, to improve on the low-fidelity speed signal
present in neural activity. When a tradeoff is incorporated
between movement speed and angular velocity, speed accuracy
is improved without neural activity being required to supply an
accurate speed signal. This SDKF design feature was informed
in part by natural arm movements. First, as previously men-
tioned, natural arm movement speeds are influenced by the
dynamics of the muscles and spinal cord, which may possibly
alleviate the need for M1 to specify the moment-by-moment
details of movement speed. In this sense, SDKF has a biomi-
metic interpretation in that the history dependent trajectory
model (Eq. 19) imposes speed dynamics that are not directly
specified by the neural activity. Second, natural arm move-
ments have been shown to demonstrate a tradeoff between
speed and curvature, often referred to as the two-thirds power
law (Lacquaniti et al. 1983). Neural correlates of this relation-
ship have been reported in previous studies of motor cortical
activity underlying arm movements (Moran and Schwartz
1999a; Schwartz 1994). We used angular velocity (the tempo-
ral derivative of direction) as a proxy for curvature (the spatial
derivative of direction) to simplify the BMI implementation.

Although the implemented tradeoff between speed and an-
gular velocity enables SDKF to apply speed information not
directly specified by the neural activity, the tradeoff alone is
not sufficient to supply all of the requisite speed information.
For example, changes in movement speed may be desired
when changes in direction are not, especially for straight
movements typical in a center-out task. For this reason, we
incorporate the tradeoff between speed and angular velocity as

an additional mechanism to complement the speed control
implicit in SDKF’s velocity encoding model. Future work will
be needed to determine how well the SDKF trajectory model
generalizes to tasks requiring curved movements (e.g., pursuit,
circle drawing). It remains to be seen whether speed dampen-
ing is assistive or restrictive in these tasks.

A trivial means of improving cursor stability at targets is to
simply slow down the decoded cursor movement. A slower
cursor provides the subject with more time to instruct correc-
tive movements to avoid inadvertent overshoot upon target
acquisition. However, this approach increases movement times
and decreases the overall throughput of the BMI. We applied a
constant speed gain to SDKF such that movement times were
matched between SDKF and VKF. With higher success rates
for the same movement time, SDKF achieves a substantially
higher throughput than does VKF. Rather than choose speed
gains to match movement times, we could have matched mean
movement speeds (VKF speeds were slightly faster on average
than SDKF speeds). In this case, we would expect SDKF
movement times to be shorter than those for VKF, but poten-
tially at the expense of success rates for longer hold times. BMI
decoders are inherently subject to this speed-accuracy tradeoff
(Gowda et al. 2012), and in future experiments it may be
worthwhile to specifically probe this tradeoff by evaluating
decoders across a range of speed gains.

Previous BMI studies have proposed alternative approaches
to solving the “cursor-stopping problem.” One approach is to
directly decode a discrete target variable, such as movement
end-point (Shanechi et al. 2013; Srinivasan et al. 2006; Yu et
al. 2007), which could then be used to either constrain a
subsequent trajectory estimate or to generate automatic control
signals for acquiring the target. Additional approaches are to
decode using a nonlinear neural tuning model that directly
incorporates intended movement speed (Li et al. 2009) or to
decode a binary stop signal (Hwang and Andersen 2009; Kim
et al. 2011; Nuyujukian et al. 2012; Velliste et al. 2010).
Taking an alternative approach, Gilja et al. (2012) recently
demonstrated improved cursor stopping by applying assump-
tions based on feedback control. Finally, providing other mo-
dalities of sensory feedback (in addition to visual feedback)
might help the subject better control BMI movement speed
(O’Doherty et al. 2011). SDKF offers a complementary solu-
tion that enables the user to continuously guide and stop the
cursor, while relying relatively little on the capacity for neural
activity to directly specify movement speed.

Gilja et al. (2012) provide a comparison across studies in
terms of Fitt’s throughput, as computed by

Index of difficulty � log2

Distance � Window

Window
(20)

Throughput �
Index of difficulty

Acquire time
. (21)

In the present study, the distance between workspace center
and target center was 85 mm, and cursor and target radii were
each 7 mm. Because target acquisition was defined by cursor-
target overlap, the effective window size was 14 mm. For
SDKF trials with required holds between 0 and 600 ms (ex-
pected hold time was 300 ms) and without cursor recentering,
mean acquire time was 1.24 s, resulting in a throughput of 2.28

426 MOTOR CORTICAL CONTROL OF MOVEMENT SPEED

J Neurophysiol • doi:10.1152/jn.00391.2013 • www.jn.org



bits/s. The algorithm of Gilja et al. (2012) achieved through-
puts of 1.48 and 1.81 bits/s in a task requiring 500-ms holds
and without cursor recentering. We provide these numbers to
approximately align between studies; however, differences
between subjects and differences in trial structure may make
exact comparisons impossible. Another important distinction is
that in our task, trials were failed if target acquisition was lost
at any time before the hold requirement was satisfied, whereas
Gilja et al. (2012) continued trials until the hold requirement
was satisfied while keeping track of the “dial-in” time between
the initial target acquisition and completion of the target hold.
For our study, success rate summarizes the subject’s ability to
stop and hold, whereas “dial-in” time is the analogous metric
used by Gilja et al. (2012). Neither of these statistics factor into
Fitt’s throughput, and as such, Fitt’s throughput cannot be used
in this form to summarize stopping ability. A more direct
comparison between SDKF and the aforementioned ap-
proaches might prove insightful in future work, and we believe
that a combination approach leveraging the innovations pre-
sented across these studies is likely to yield the best results.

The general design principles underlying SDKF demonstrate
the potential for performance gains when highly controllable
neural modulations, previously used to drive one subset of
control dimensions in the BMI task space (e.g., movement
direction), are tapped to improve control across other dimen-
sions of the BMI task space (e.g., movement speed). Impor-
tantly, these performance gains may be enhanced through
subjects’ adoption of cognitive control strategies that are ef-
fective in an online setting when paired with a decoder de-
signed to be compatible with these strategies (e.g., instruct a
sharp turn when a crisp stop is desired).

APPENDIX

Optimization for Direction Discretization

To discretize movement direction, we labeled each timestep in a
data set according to the direction centroid, of 26 candidate centroids,
whose angle with the measured movement direction was smallest. We
designed the following optimization procedure to choose the set of
direction centroids such that the discretization would result in approx-
imately the same number of data points for each discretization label.

Given a set of direction centroids, we discretized the actual move-
ment directions and computed the entropy of the resulting discretiza-
tion

� �
x�X

p(x)log2p(x), (A1)

where X is the initialized set of direction labels and p(x) is the fraction
of data points whose minimum angle direction label was x. Next, we
selected one direction centroid and applied a small random rotation.
We recomputed the entropy after discretizing the data using this
perturbed direction label and the remaining 25 unperturbed labels. If
this entropy was greater than the entropy prior to the random rotation,
the rotated direction label was accepted. Otherwise, the rotation was
rejected, and the set of direction centroids reverted back to the set
prior to this random rotation. This process was repeated over 5 million
iterations.

We initialized the procedure with the set of 26 target directions
from the arm reaching task. In each iteration, we randomly selected
the direction centroid to perturb to be either the centroid that labeled
the most number of data points or the centroid that labeled the least
number of data points. If the entropy had not increased after 1,000
consecutive iterations (i.e., no random rotations were accepted), the

centroid to perturb was selected at random from the full set of 26
centroids. Random rotations were applied by 1) defining a 3D unit
vector in the direction of the unperturbed centroid, 2) perturbing this
unit vector by adding to each coordinate an independent draw from a
Gaussian distribution with standard deviation 1 � 10�4, and 3)
projecting the perturbed unit vector back onto a unit sphere.

By construction, this procedure is guaranteed to produce a se-
quence of nondecreasing entropies and is thus guaranteed to converge
to either a local or global maximum. The theoretical maximum
entropy is log2(26) � 4.7 when the p(x) are equal for all direction
labels. If the number of data points n in a data set does not divide
evenly into 26, the theoretical maximum is achieved when the p(x)
differ by at most 1/n. In practice, optimized discretizations resulted in
entropies that were within 4 � 10�5 of the theoretical maximum
entropies.

VKF Algorithm

The Kalman filter predicts the subject’s intended movement veloc-
ity given all recorded neural activity up to the current timestep. The
Kalman filter prediction is a distribution over intended velocities,
which takes the form of a multivariate normal distribution, i.e.,
P(vt|y1, . . . , yt) � N(v̂t, 
t). At each timestep t, the Kalman filter
algorithm estimates the expected velocity, v̂t, and a corresponding
uncertainty, 
t, given all neural activity up to the current timestep.

Kalman filter predictions are computed recursively such that the
prediction at a given timestep is computed using the prediction from
the previous timestep. First, the trajectory model from Eq. 17 is used
to project previous predictions through a one-step update (Eqs. A4 and
A5). To determine the relative contributions of this trajectory-only
update and the current neural activity, the Kalman gain is computed
(Eq. A6) by integrating the uncertainties due to the trajectory and
encoding models. This gain term is then used to incorporate the
current neural activity into the current prediction (Eq. A7). Finally, the
uncertainty of this prediction is computed based on the uncertainty
from the one-step update, but reduced to reflect the information gained
from the current neural activity (Eq. A8). VKF provides a stable
decoding system (residual velocities will decay to 0 if neural inputs
remain constant at baseline) when the maximal eigenvalue of At �
KtCAt, from Eq. A7, is less than 1. The mathematical description of
the complete VFK algorithm is as follows:

initialize:

v̂0 � 0, �0 �0 (A2)

for t � {1, 2, . . . }

At � A (A3)

v̂t
� � Atv̂t�1 (A4)

�t
� � At �t�1At

' � Q (A5)

Kt � �t
� C=(C�t

� C=� R)�1 (A6)

v̂t � v̂t
� � Kt(yt � Cv̂t

� � d)

� (At � KtCAt)v̂t�1 � Kt(yt � d)
(A7)

�t ��t
� �KtC�t

� (A8)

SDKF Algorithm

To incorporate a tradeoff between speed and angular velocity,
SDKF dampens the decoded speed when the recently decoded cursor
trajectory exhibits a large absolute angular velocity. Since angular
velocity is ill-defined at near-zero speed, speed dampening is reduced
when cursor speeds are low, enabling the cursor to accelerate from
stops. These design features are implemented through an extension to
VKF, whereby SDKF incorporates the adaptive trajectory model
described in Eq. 19. At each timestep, SDKF computes the direction
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of the most recently decoded velocity (Eq. A9) and the change in
direction since the previous timestep (Eq. A10), wrapped to remain
between �180 and 180 deg. Next, the mean angular velocity is
defined as the average change in direction over the most recent three
timesteps, which corresponds to 100 ms (Eq. A11). Angular velocity-
based speed dampening (Eq. A12) and speed-based speed dampening
(Eq. A13) are combined using Eq. A14, where 
t � [0, 1] is a
time-varying speed-dampening factor. SDKF exactly reproduces VKF
decoding when 
t � 1. For 0 � 
t � 1, the one-step update in Eqs.
A4 and A5 effectively shrinks the velocity prior toward 0, dampening
the decoded speed relative to the corresponding VKF decode. The
mathematical description of the SDKF algorithm is the same as that
for the VKF algorithm but replacing Eq. A3 with the following
sequence:

t � tan�1(
v̂t,2

v̂t,1
), t � [�180, 180] (A9)

�t � mod(t � t�1 � 180, 360) � 180 (A10)

�t �
1

3 �
k�t�2

t �k

	t
(A11)


t
� � max(0, 1 � �|�t�1|) (A12)


t
s � max(0, 1 � �� v̂t�1�) (A13)


t � min(1, 
t
� � 
t

s) (A14)

At � 
tA (A15)

We manually selected � � 1⁄3 and � � 8 to achieve the desired
speed dampening during preliminary experiments and fixed the pa-
rameters during all analyzed experiments. Speed dampening is shown
as a function of speed and angular velocity in Fig. A1. As defined,
SDKF’s speed dampening can decrease decoded speeds but cannot
increase them. To match movement times between VKF and SDKF,
we multiplied SDKF-decoded velocities by a constant speed gain
factor of 3.
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